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Abstract-A study has been made of the flow, heat transfer and stability of a natural convection loop when 
there is an addition and withdrawal of fluid. The loop is a toroid that is oriented in a vertical plane and is 
heated over the lower half and cooled, by maintaining a constant wall temperature, on the upper half. The 

results include stable, as well as unstable configurations and also reveal multiple solutions. 

NOMENCLATURE 

cross-sectional area of the toroid; 
specific heat ; 
dimensionless parameter, equation (11); 
heat flux; 
friction coefficient ; 
acceleration of gravity; 
heat-transfer coefficient; 
total number of grids; 
pressure ; 
volumetric flow rate of the circulating fluid in 
the system; 
radius of the circular loop, Fig. 1; 
Reynolds number ; 
radius of the toroid, Fig. 1; 
temperature; 
time; 
characteristic velocity, equation (8); 
velocity of the circulating fluid ; 
dimensionless volumetric flow rate or 
velocity, equation (7). 

Greek symbols 

8, thermal expansion coefficient ; 
r, dimensionless parameter, equation (11); 

% efficiency, equations (lS)-( 17) ; 
6 space coordinate, Fig. 1; 
6 

P’ 
thermal penetration depth ; 

K, dimensionless volumetric throughflow rate, 
equation (7); 

K*, volumetric throughflow rate ; 
P- absolute viscosity ; 
A density; 

7, dimensionless time, equation (7); 

? Presently on leave, Electric Power Research Institute, 
Palo Alto, CA 94303, U.S.A. 

?w wall shear stress; 

(6, dimensionless temperature, equation (7). 

Subscripts 

0, location at B = 0; 

ch, characteristic ; 
6 initial value, space step in the finite difference 

equations; 
in, inlet ; 
6 lower portion of the loop; 

M, location at 8 = 271; 

n, time step in the finite difference equations; 

ss, steady-state; 

u, upper portion of the loop; 

w, wall. 

THIS paper is concerned with the transient and steady 
state behavior and stability of natural convection 
loops, i.e. thermosyphons, when there is an addition 
and withdrawal of fluid (throughflow). Increasing 
interest in this area has occurred in respect to appfi- 
cations in solar energy, nuclear reactor cooling and 
geothermal systems. Most studies have been carried 
out for closed loops, that is, without a throughflow. 
This includes the early stability studies of the steady 
state motion by Keller [l] and Welander [2] for the 
simple geometry consisting of a point heat source and 
sink with two vertical branches. Creveling et af. [3] 
and Damerell and Schoenhals [4] considered a to- 
roidal loop and showed, experimentally and theoreti- 
cally, the presence and importance of instabilities. 
Zvirin, Shitzer and Grossman [SJ and Zvirin et al. [6) 
studied the stability characteristics of the thermo- 
syphonic solar water heater and showed that this 
system can become unstable at high energy util- 
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izations. Mertol et al. [7, 81 studied the transient 
daytime and nighttime performance of a thermo- 
syphon solar water heater with a heat-exchanger in the 
storage tank and found, analytically, that the flow 

reverses during the night but the magnitude of the 
reverse flow is reduced when high viscosity fluids, such 
as propylene glycol are used. It was also observed that 
low viscosity fluids have strong oscillations during the 
night. A study of the transient behavior and stability of 

the toroidal loop was carried out by Greif, Zvirin and 
Mertol [9] and Mertol [lo]. Other studies by Japikse 
[ 111, Zvirin et al. [ 12,131 and Ong [ 14,151 should also 

be noted. 
The references cited above refer to closed loops and 

much less information is available on open thermo- 

syphons. Torrance [16] studied the steady flow and 
heat transfer in an open geothermal system where the 
inlet and outlet are at a boundary of the medium. 
Zvirin [17, 181 studied the effects of a throughflow on 

the loop with two vertical branches with a point heat 
source and sink. 

The present work analyzes the steady state, tran- 
sient and stability behavior of an open toroidal loop. 

The loop is oriented in a vertical plane which is heated 
over the lower half and cooled by maintaining a 

constant wall temperature on the upper half (cf. Fig. 1). 
The conservation equations are averaged over the 
cross-section and an analytical solution is derived for 

the steady state condition. A numerical method is used 

to obtain the transient flow and heat transfer by 

solving simultaneously the momentum and energy 

equations. The numerical method is also used to 
evaluate the stability characteristics of the system and 
small amplitude instabilities associated with oscil- 
latory motion in thermosyphons have been shown to 
be present. In addition, the steady state motion reveals 
another type of instability associated with multiple 
solutions (double or triple) for certain ranges of the 

system and throughflow parameters. 

ANALYSIS 

The analysis which follows predicts the transient 
and steady state volumetric flow rate and temperature 

profiles in an open toroidal thermosyphon with 

throughflow. The loop is heated continuously by a 
constant heat flux F over the bottom half and is cooled 

continuously over the top half by maintaining a 
constant wall temperature at T, (cf. Fig. I). A constant 

volumetric throughflow rate, K*. is maintained with 
the inlet at the entrance to the heated region, B = n. 

and the outlet at the exit from the heated region, ti = 0 

or 27~. Perfect mixing is assumed to occur at the inlet. 

between 0 = n- and ni. 
The conservation equations ; continuity. momen- 

tum and energy, are averaged over the cross-section [3. 

91 so that the control volume is of diameter 3r and 
length RdfI (cf. Fig. 1). The flow is assumed to be 
laminar and the fluid properties are taken as constant 
except in the buoyancy term in which the Boussinesq 
approximation is used. Viscous heating, axial con- 

duction and curvature effects are neglected. 
From the equation of continuity for one- 

dimensional incompressible flow. we have that the 
velocity and the volumetric flow rate are functions of 
time only. In the upper region this is given by 

q,(t) = d~“(ti ilai 

and in the lower region by 

llbi 

The momentum equation in the 0 direction for these 
regions is : 

[] !! = _ $2 _ py COS (j _ 25 (2) 

r 

where tj, and uI are used in the upper and lower regions, 
respectively. Multiplying equation (2) by the cross- 

_ Constant wall _ 

heat flux, F 

FE. 1. Toroidal open thermosyphon. 
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sectional area, A = m*, using the relation p = 

PIvEl - IV- ~WJI in the body force term, and as 
The wall shear stresses in equation (5) are expressed 

integrating around the loop yields the following 
equations for the upper and lower regions, r 
respectively : 

W,” 

X I n- (T- Tw) cos Bd0 - z,, ,2nr, 0 < 0 < 71 (3a) 
0 

and 

P&l + K*) = - ;[p(%t) - p(n+,t)] 

s 2n 

+ Pdr28 
Z+ 

(‘I’- T,,,)cosBdfI - ~,,r27~r, 

R < e < 2n (3b) 

and 

for the upper and lower portions of the loop, re- 
spectively, where the friction coefficients for laminar 
flow are given byf,, I = 16/Re,, I with Re, = 2p~~~~~r 
and Re, = 2p,(q + K*)/pnr. 

The dimensionless forms of equations (5) and (6) 
then become 

where q z qu. Adding equations (3a) and (3b) and 
84 x+2RW$= - 2D4, 0 < e < 71 (lOa) 

using continuity of the pressure: 

P(n-,r) = p(n’,r), p(O,r) = K&t) (4) 
and 

yields 
arp z + 27c(w + K); = 2D, R < e < 2n (lob) 

d 
pWz(2q + K*) = pWsr2B where the dimensionless system parameters D and ‘r 

are defined bv 

s 2n 

X (T- T,) c0s ede - 2nr(T,, il + 2,, {). (5) 
0 

2rcRh 
D=-..-.- and r - ‘%’ 

PdrV -pwr2. 
(111 

To solve for the volumetric flow rate from equation 
(5), it is necessary to obtain the temperature variation, 

Steady state soEutions 

7’(0, t). The energy equations for the heated lower and 
The steady state temperature profile is obtained by 

cooled upper regions are given by: 
solving equations (10) with +/& = 0 subject to the 
conditions of temperature continuity at the outlet : 

pwc 
-- 

I 

2h 
= -+T-TJ, O<@<n 4&(O) = #s&27$ 

Pa) 
and an energy balance at the inlet : 

and Mx+) = 

1 

2F 

& &s(x- I+ & An U2b) 
ss 

=I> z < e c 2n. The results are 

6-W #(e) = 4,, = 

Equations (5) and (6) must be solved simultaneously to 
[ 

D + @in 
obtain the volumetric flow rate and the temperature 
profiles. (13a) 

The governing equations are made ~mensionless by D . 
defining the following relations : 

(Ws + K) 

4 =y, w=-, ;h K=--, 

e 
;I w, (2e -D’wss - 1) + %+i”(W,, + K) - K 

c 
‘=& (7) 

[ 
f+ 
n K + W, (1 - e- D’wss) ’ 1 

where qE,, is the characteristic volumetric flow rate 
defined as the product of the characteristic velocity, V, 

R < e < 2n (13b) 

and the cross-sectional area, A, (cf. Creveling et al. [3]). where 4, and w,, denote the steady-state values for the 

112 temperature and the volumetric flow rate, respectively. 
Q, = AV= nr2 V= nr* . 

(8) 
Substituting equations (13a) and (13b) into the mo- 
mentum equation (9X with dw/dr = 0 yields the follow- 
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ing algebraic equation for w,, : 

(w,, + 4 tiy 

(w,, + K)(D + Kdin)(I + e ““‘.s) 

= 4W,,[K + W,,(I - e “‘“*s)l][l + (D/nW,J2] 

+ ![I - K(W,, + $K,]. (14) 

For no throughflow K = 0, equations (13) and (14) 
reduce to the results for the closed thermosyphon (cf. 

c3, 91).? 
The system efficiency, 8, is defined as the ratio of the 

energy carried away by the throughflow to the total 
energy added to the loop. At steady state conditions 
this is given by 

pK*c[T(27r) - Tin] 
8,s = ~ __~_~ rln (15) 

I F2mRdO 
.J P 

which in dimensionless form is 

Note that for the transient condition the efficiency is 

(17) 

Transient and stability solutions 
The coupled, time dependent governing equations, 

equations (9), (lOa) and (lob) have been solved 
numerically by using a finite difference method to 
calculate the temperature and the volumetric flow rate 
variations. The backward difference formula was used 

in the spatial derivatives and the forward difference 
formula was used in the time derivatives. The integral 

in the momentum equation, equation (9), was evalu- 

ated by using the trapezoidal rule. The governing 
equations in finite difference form are given by : 

W “+ i = w,( 1 - I-AT) - -; I-KAT 

+ a E 

i 

y!j40.“+ ,cos(O)+ M~14i.,+lcos(iAB) 

i-L 

+fQM,“+I~os(MAO) AeAr (18) 
I 

~i.n+1 = &n (I - 2DAt - 27~” gj 

+ 2nw”Qi_~.$;. 0 <B < n (19) 

i 

AT 
#i.n+l = 4i.n 1-2n(w,+K)- 

AQ 1 

t Creveling et al. [3] obtained an approximate solution for 
small values of D for a closed toroidal loop. 

AT 
+ ZTC(W, + K) 4i_ 1, n xtj + 2DAt ; 

l? < 0 < 2n (20) 

where 0 = iA0, 2n = MAO and T --: UAT. The initial 

conditions are specified and the boundary conditions 
are given by : 

dk,“Cl =: OLr;.“~ i i’l) 

and 

(22) 

Several cases of initial conditions were treated. as 

discussed later. 
The time and space intervals were chosen so as to 

satisfy the stability criteria of the finite difference 

equations which are given by : 

1 - I-AT 2 0 I’3j 

and 

A time increment of 0.005 was used and a space 
increment of A0 equal to 2x/80 was chosen. 

The numerical formulation, equations (18)- (22), 
was also used to investigate the stability characteristics 

of the natural circulation flows in the loop. For this 
part of the study the equations were solved with initial 

conditions corresponding to small perturbations of the 
(known) steady state flows. Stability was determined 
by the behavior of the solutions, i.e. the growth or 

decay of the perturbations. 

RESULTS AND DISCUSSlOU 

The transient, steady state and stability behavior of 
a thermosyphon with throughflow has been investi- 
gated. Numerical calculations were started at time r 
= 0 for a specified initial volumetric flow rate, wir and 

temperature distribution, 4i, of the circulating Ruid. 
The volumetric flow rate, K, and inlet temperature, 4in. 
of the injected fluid (throughflow) have been taken as 
constant. The circulating and the injected fluid are 
assumed to be mixed perfectly at 0 = n, the inlet to the 
heating region. The same amount of injected fluid is 
withdrawn at B = 271 which is the outlet from the 
heating region. The remaining fluid cools in the upper 
region, 0 < /3 < x by convection to the cold wall which 

is maintained at a constant temperature (cf. Fig. I). 
Typical results for the temperature are shown in 

Figs. 2(a) and (b) for values of r = 1, D = 2.5, an initial 

temperature profile $i = 0, an initial volumetric flow 

rate wi = 1.5, a volumetric throughflow rate K = 0.2 
and different inlet temperature of the throughflow. Cpi. 
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FIG. 

3.0 , I I / I I , I I , 1 1 1 I , 1 r 0 1 

D=2,5,r=I.,di,= -0.5, ~~0.2 

-- - - - Steady state #,,.) 

D= 2.5, r= I., &=O., K10.2 

Wi= 1.5, +i=O. 

-- Steadv state ( 

(b) 
0 lT/2 l7 3T/2 27 
277 

Q 
0 

2(a). Temperature distribution at different times for stable condition (@in = -0.5). (b) 
distribution at different times for stable condition (Q, = 0). 

= -0.5 and 0. It is pointed out that the condition of 

initial flow with a uniform temperature (4; = 0) cor- 
responds to forced flow in the loop (driven by a pump) 
before activation of the heater. It can also represent, 

approximately, a strong forced flow with respect to the 

input power, where the temperature differences are 
small. This initial condition may be encountered 
during nuclear reactor power plant cooling after a 
reactor scram and the pumps trip. Other types of 
boundary conditions, e.g. initiation of flow from rest, 
have also been studied [12,17] and also perturbations 

from the steady state condition (cf. Figs. 7-9). The 
variations of the volumetric flow rate, W, are shown in 
Figs. 3(a) and (b) for the cases & = 0 and -0.5 for 
initial volumetric flow rates, ranging from wi = 0.2 
to 1.5. 

For small times, there is a thermal penetration depth 
in the cooled region (0 < 8 < n) beyond which there is 

no heating effect, that is, a4/atI = 0, cf. Figs. 2(a) and 

Temperature 

(b). Similarly, there is a penetration depth in the heated 
region (n < Q < 27~) beyond which a$@@ = 0, cf. Figs. 

2(a) and (b). These results may also be deduced from 
the formal solution to equations (10a) and (lob) for 
small times which are presented in the Appendix. 

Comparing the results for the penetration depth, eP, 
with those of [9] for a closed loop, K = 0, it is 
concluded that the throughflow tends to slightly 

reduce 8,. (Also refer to Figs. 3(a) and (b) which 
explicitly show for wi = 0.6 that the velocity is less for 

the throughflow case. In the Appendix it is shown that 
smaller velocities yield smaller penetration depths.) It is 

also seen that there is a discontinuity in the tempera- 
ture at 0 = 71 which results from the assumption of 
perfect mixing at this location of the circulating fluid 
with the injected fluid (throughflow). 

Results for larger times, as well as for smaller times 
are shown in Figs. 2(a) and (b) for the temperature and 
in Figs. 3(a) and (b) for the volumetric flow rate (for 
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D=25,T=l,+,,=-0.5, ~=,32,+,=0 

I ~;_ I ._._ _I.._-.. .._.. L..._- ._.-._A 

ia) 20 30 40 

1.4 

3 0.8 

0.6 

04 

0.2 

0=25,r=l.,~,,=O,~=02, +,=O - 

----wss= 0.814 

r 

FE. 3.(a). Volumetric flow rate (or velocity) variation for different initiai volumetric flow rates for stable 
condition (@, = -0.5). fb) Volumetric flow rate (or velocity) variation for different initial volumetric flow 

rates for stable condition (Qcpin = 0). 

initial volumetric flow rates, ranging from wi = 0.2 to The steady state values of the flow rate, u‘,~,, and the 
1.5). For completeness, it is noted that results for the temperature, b,,, are given in Table 1. Note in Figs. 
closed loop, K = 0, (Greif er al. [S]) have larger flow 4(a) ($i” = -0.5) and (b) (4i,, = 0) that the tempera- 
rates than those obtained for the throughflow case for tures with throughflow are lower than for the closed 
the condition K = 0.2 for both (bin = 0 and -0.5. loop, K = 0 (the comparison is shown for wi = 0.6). 

The temporal variation of the temperature is shown In Figs. 5(a) (#in = -0.5) and (b) (&, = 0) the 
in Figs. 4(a) and (b) at three locations, 8 = 0, $2 and variations of the efficiency with time are shown for 
3z/2. For al1 the cases considered, the flow rate initially different initial flow rates, wC From the definition of the 
decreases, cf. Figs. 3(a) and (b). For nji = 0.2,0.6 and efficiency, equation (17), we have that the only time 
0.8 this initial decrease causes the velocity to differ (for dependent quantity is the temperature G(2n.z). Ac- 
small times) from the steady state value, ws, = 0.814. cordingly, the shape of the curves follows directly from 
This is accompanied by an overshoot of the tempera- the previous discussion; the rate of increase of the 
ture; that is, $/I$,, > 1, with the greatest effects efficiency being greatest (and in fact, linear) for small 
occurring when the flow rate is small and the heating of times when the flow rate is decreasing. In Fig. 6 the 
the fluid is therefore more prolonged and effective. efficiency is plotted for one flow rate, wi = 1.5, for three 
Note that there is a small Aow overshoot for wi = 0.2, values of the inlet temperature, din = - 0.5,0,0.5 and 
cf. Fig. 3(b). A comparison of the closed loop (K = 0) for volumetric throughflow rates, ranging from ti 
and the present loop with throughflow is made in Fig. = 0.2 to 1.0. For small times, there is some crossing 
3(b). For wi = 0.6 the closed loop has a flow overshoot over of the curves but for larger times the efficiency 
while the loop with throughflow has no overshoot. increases for increasing values of the volumetric 
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D*2.5,r-1 ,&=-0.5,1~*0.2,# =O 

4.0 __-_-___ 0.6 

-.-._ 0.8 

-..-.I- 1.2 

-...-...- 1.5 

,= 3.0 

\ 

2 

c 

g 
2.0 

I .o 

2.0 30 40 

T 

-ii- 

(b) 

5.0 

4.0 

3.0 

20 

i 
I.0 

I 

0.0 
0.0 1.0 2.0 3.0 4.0 

r 

e=o, 277 

FIG. 4(a). Temperature variations for different initial vo~umetric~ow rates for stableco~dit~on (tpi,, - -0.5). 
(b) Temperature variations for different initial volumetric flow rates for stable condition ($. = 0). 
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Table 1. Steady state values 

- 

D $in k ws5 
i,=fl,2,; q=.?,2 .zz.;- '.Zi" 'i=h/Z 

-._-L!L... 
-0.5 0.0 1.000 _~-"-~~-_~~_~'~.-_‘__ 1.031 0.951 0.951 1.0110 O.O@(' 

0.1 0.7?4 0.259 0.241 0.225 0.137 0.198 _~_. _ 
0.1 0.0 0.0 1.000 1.051 ?.OO'i 0.951 0.951 1.000 0.000 

0.1 0.804 0.515 0.484 0.455 0.405 0.460 c.515 
0.5 0.448 0.170 0.152 0.136 0.~764 0.117 !I.848 
0.9 0.202 0.102 0.080 0.062 0.011 0.057 0.919 ____l__l."~-. 

0.5 0.0 1.000 1.051 ____o.951~-- 1.000 0.951 1.000 0.000 
0.1 0.877 0.771 0.728 0.688 c,.669 0.720 0.27: 
0.5 0.628 '1,591 0.546 0.504 0.502 0.546 0.453 
l.il 0.426 0.551 0.490 0.436 0.481 0.516 0.500 -.I 

-0.5 ;I; 0.996 1.585 cl.959 0.580 0.500 1.083 o.oOc'--- 
0.897 I.352 0.774 0.443 0.349 0.8513 0.1a5 

0.5 0.542 0.784 cl.312 0.124 -c1.176 0.304 3.642 
I.0 0.015 0.493 0 000 0.000 -0.493 0.000 0.993 .___ ---_-. 

1.0 0.0 i:: o.996 1.585 ---cm 0.5t3O 0.580 1.oa3 0.001) 
0.9cl9 1.416 0.817 0.471 0.424 0.920 0.14;' 

0.5 0.598 1.014 0.440 9.191 0.104 0.559 0.507 
fl 824 0.081 o.onn 0.001 0 413 0.824 - A:; _~~~~__~___~______._~~_____ _~ 

0.5 1.585 0.959 0.587 0.580 1.083 il.ooc 
0.1 0.920 1.479 0.859 ri.dW 0.499 0.989 17.09i: 
0.5 0.651 1.237 0.574 0.266 0.368 0.802 0.x;_ 
1.0 0.341 ___- 

-0.5 0.0 0.1 0.974 _~~~_-'""~2-_~i~-__~_~~___~~~--_-g~~~.. 2.780 0.770 0:12i 0.889 2.618 0.642 0.157 0.091 1.354 
0.5 0.548 2.159 0.221 0.021 -0.227 0.966 c.53:: 

A:! 
0.017 1.966 0.000 D.000 -0.491 0.737 0.98f 

2.5 0.0 0.974 2.780 0.770 3.214 0.214 1.497 0.000 
0.1 0.894 2.661 0.657 0.106 0.146 I.404 O.lrif 
0.5 0.571 2.349 0.264 0.030 0.016 1.182 c.471; 
1.0 0.023 2 443 0.000 0.000 0.000 1.221 0.977 

.---c-_--__e 
-..I 

0.5 5.0 0.974 2.780 0.770 0.214 0.214 1.497 o.ooc 
0.1 0.899 2.704 0.673 0.16:! 0.201 1.452 C1.088 
0.5 0.595 2.533 0.310 0.038 0.249 1.391 0.40; 
1.0 0.033 2.905 0.000 0.000 0.484 1.695 0.962 

-0.5 ;:y 0.919 5.466 0.360 0.024 0.024 2.745 0.000 
0.832 5.324 0.264 0.013 -0.042 2.641 !).I16 

0.5 0.474 4.875 0.025 0.000 -0.257 2.309 0.536 
1.0 0.018 4.418 0 000 i).iiOO -0 491 1 964 0.9t34 --1--__-.A. ---. 

5.0 0.0 0.0 0.919 5.466 0.360 0.024 0.024 2.745 0.000 
0.1 0.834 5.366 0.268 0.013 0.012 2.689 0.10: 
0.5 0.482 5.089 0.029 O.r)OO a.000 2,545 0.509 
1.0 0.021 4.899_,__?.000 0.000 0.~0 2.500 0.980 

0.5 0.0 0.919 5.456 0.360 0.024 0.024 2.745 O.OOO-- 
0.1 0.836 5.438 0.272 9.014 1.066 2.737 0.098 
0.5 0.491 5.299 0.032 0.3ol-I 0.252 2.776 0.48(? 
1.0 _~~_____._L__._.~__-_.-~---._----.-. 5.378 0 no? o.wn 11.489 2.934 0.976 .“I_ 

Frt;. 5(a). Efficiency variations for different initial volumetric 
flow rates for stable condition (a,, = -0.5). 
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D= 2.5, l”= I., $,,=O. 

_ 0.3 

$ 
1, 
k 
k- 
@J 0.2 
9 

+ 
& 

0. I 

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 

T 

FOG. S(b). Efficiency variations for different initial volumetric fiow rates for stable condition (@, = 0). 

throughflow rate and for decreasing values of the inlet 
temperature. These trends may also be noted in the 
steady state tabulation of the efficiencies, Table 1. 

The above results correspond to flows which ap- 
proach the steady state values and are denoted as 
stable flows. There are, however, unstable cases when 
the flow and temperature oscillate with increasing 
amplitude (cf. Figs. 7 and 8) as well as neutrally stable 

I .o 

0.9 

0.8 

07 

Q 0.6 
A 
I- 0.5 
k” 

N 
04 

-8 
- 

0.3 
r/n 
P 0.2 

0. I 

0.0 

-0. I 

cases where the magnitude of the oscillations about the 
steady state values remain constant (cf. Fig. 9). 

In the absence of a throughflow, the instabilities in 
the toroidal loop have been studied experimentally [3, 
41 and theoretically [3,4,9, lo]. It is generally believed 
that these instabilities are caused by phase shifts 
between the buoyancy (driving) forces created by 
temperature differences, and the friction forces (or flow 

__ ;-•-•’ 
rc=lO-+. 4 /---‘,..----- 

-.-.- -0.5 

- 0.0 
--__--- 0.5 

I/,, ,,I, I,,, ,/I, I I I I -0.2 
0.0 1.0 2.0 3.0 4.0 5.0 
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FIG. 6. Efficiency variations for different volumetric throughflow rates and for different inlet temperatures. 
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rates). Such a phenomenon can occur when a “pocket” 
of fluid at a temperature higher than usual enters the 

heating region at a flow rate lower than usual. The 
pocket will then be heated to a much higher value (due 
to its smaller velocity), and if it cannot be adequately 
cooled down it will reenter the heating region at a still 
higher temperature and the process will be repeated 
and amplified. A stability map is shown in Fig. 10 for 
c#+. = 0 and 0.5, respectively. 

In Fig. 10 the effect of throughflow, K, is seen to 
increase the stability of the loop since some per- 
turbations which would cause instability (for K = 0) 
are now carried out of the loop with the throughflow. 
The stable portion of the graph is therefore increased, 
that is, the neutrally stable curve shifts to the left for 
increasingly larger values of K. The cooler inlet case, 

& = 0, yields lower temperatures; hence, less buoy- 
ancy and smaller velocities result, and consequently a 
more stable system is obtained. It is noted that the cool 
inlet case &. = -0.5 was completely stable for the 
range of values of Fig. 10. 

The steady state behavior is obtained from the 
analytical solutions, equations (13) and (14). In gen- 
eral, equation (14) must be solved numerically to 
obtain the steady state flow rate, w,,, which depends on 
the system parameter D and the throughflow con- 

ditions K and &i,,. Once w,, is known, the steady state 
temperatures, $,,, can be calculated from equation 

(13). 
The steady-state values are summarized in Table 1 

and in Fig. 11. An interesting result, namely, the 
existence of multiple steady state solutions is obtained 
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for small values of D (cf. Fig. 11). The existence of 
multiple solutions implies metastable equilibrium and 
a finite amplitude mode of instability. This differs from 
the small amplitude instabilities associated with oscil- 
latory motion which were previously discussed. The 
multiple solutions can be explained as follows. At 
steady state the frictional resistance is balanced by the 
driving buoyancy force. While the former is a mo- 
notonically increasing function of the flow rate, w,,, 
(linear in our case), the latter is a complicated function 
of wss, cf. equation (9) with d/dz = 0, which has one or 
two extrema. The result is that there are sometimes 
cases where there are two and even three values of w,, 
for which the two forces are balanced. It is noted that 
multiple solutions have been obtained by Damerell 
and Schoenhals [4] for a toroidal asymmetrical loop 

0.3 

L 0.2 
2 

0.1 

0.0 1 
0.0 0.5 I .o I.5 2.0 2.5 

D 

FIG. 10. Stability map for laminar flow (stable to the right of 
the neutral stability curve, unstable to the left of the curve). 

and by Zvirin [ 181 for the vertical loop with point heat 
source and sink. 

As mentioned above, the steady state flow rate, wss, 
must, in general, be solved numerically from equation 
(14). It is possible, however, to obtain simpler relations 
for limiting values of the parameters which yield 
results that are in agreement with Fig. 11. In detail, for 
‘large values of D equation (14) reduces to 

W,, X (.+,[ - 3K + (K’ + 8)“‘] + 0(1/D), D >> 1. 

(26) 

Thus, only a single steady-state solution exists in this 
range. For small values of D and D/wss, equation (14) 
reduces to the cubic equation 

2Wis + 3KW,2,+ 
D + K6in 

Kz - 1 - ~ 1 W 
D+K ss 

- K,",'K""a, (27) 

For D = 0.01, K = 0.1 and c#+” = -0.5, values of w,, 
equal to 0.453 and 0.0605 are obtained which agree 
with the results shown in Fig. 11. Note that the third 
steady state result for this condition cannot be ob- 
tained from equation (27) because it does not satisfy 
the constraint, D/w,, cc 1. However, the third result 
may be obtained from the solution to the following 
equation 

W,,+;(K’- l)=o, 

(28) 
D cc 1 and D/w,, >> 1 
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Ftc;. 11. Steady state thermosyphon flow rate vs throughliow rate for different inlet temperatures 01 
throughflow and for different D values. 

which yields a value of w,, = 5.00 x 10e4, in agreement 
with the result shown in Fig. 11. 

Detailed stability calculations were carried out for 
the case D = 0.1 and &,, = 0.5, and for the upper 
portion of the w,~, vs K curve in F‘ig. 11 stable results 
were obtained for both small and large values of D in 
agreement with Fig. 11. However, for the lower portion 
of the w,, vs K in Fig. 11 these solutions always 
exhibited unstable behavior for all the values of D that 
were used. Note that for these calculations, the very 
small values of the velocity (cf. Fig. 11) in conjunction 
with the initial decrease in the velocity, cf. Figs 3(a) and 
(b), lead to negative values of the velocity and this flow 

reversal denotes an unstable condition. 
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APPENDIX 

Solution for Smull Time and Determinatiotl of the 
Thermal Penetration Depth 

A formal solution of the energy equation, equation (101 
may be obtained for small times and this will yield the 
“thermal penetration depth”. From the theory of characteris- 
tics for 

2n w(z)dT c n 

the temperature is given by : 
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It should be noted that the functions in equations (A.l)and 
(A.2) may be obtained by using the conditions that are valid 

for B < Or, for small time, namely : 

for 0 f B 5 n-. (A.1) 
t&o, T) = 2Dz 

#(n-,T) = 0 

(A.3a) 

(A.3b) 

For 2% 
I 

w(f)d? $ Zltrlt < n, the temperature is: and 
ua 

444 5) = $vn*.4 = 
2Dr for 8 - I 2 8, f 27~~ 

-$&btip (A.3c) 

for a+ I 0 5 2?t (AZ)’ 

where f?, is the thermal ~net~t~on depth or thermal signal, 
is equal to (A.5) 

s 

t 
271 w(Z)dZ 

0 

LE COMPORTEMENT TRANSITOIRE 

R&sum&-L’etude coucerne l%coulement le transfert de chaleur et Ia stabi&& dune boucb de convection 
naturelle forsqu’il y a addition ou extraction de fluide. La boucIe est un tore orient& dans un plan vertical, 
chat& sur la moitii inferieure et refroidi sur la m&C supkrieure, en maintenant les tempkatures pariitales 

constantes. Les rCsultats concernent les configurations stables et instables et ils rMlent des solutions 

multiples. 

DAS INSTA~ON~RE, STATIONERY UND STABILIT~TS~ERHALT~N 
EINES T~ERMOSYPHONS MIT DURCHFLUSS 

Zusammenfassung-Es wurde eine Studie iiber StrBmung, Wgmeiibergang und Stabilitat eines freien 
Konvektionskreislaufs durchgefiihrt fur den Fall, da13 Fliissigkeit zu- und abgefiihrt wird. Des Kreislauf ist 
ein in der vertikalen Ebene orientierter Torous, der iiber die untere Halfte beheizt und unter Aufrechterhal- 
tung einer konstanten Wandtemperatur fiber die obere Hitfte gekiihlt wird. Die Ergebnisse enthalten sowohi 

stabile aIs such instabile Kon~gurat~onen und fuhren auf mehrfache L&ungen. 

Auao~a~~ - IIpoaenetlo iiccne~oaaH~e re9enmi, era ~~o~~~B~CT~ w rennone~H~a B C~060nifO- 

KOHBCKT~~HO~ KOHTY~ IlpEi nO&BOES iI or6ope WCH,QKOCTII. KOHTYP RBSIXCTCR TO~~~anb~~~M ES 

OpireHTIl~BaH B BepT~Ka~bHO~ RJIOCKOCTH. f’kWpe8 u~~3BO~~TCa B EiFiIiCHeti er0 YBCTR, a OXJIa2%AeHKe 

- B 6epxHeE 3a cqeT nonaepxamifl ~IOCTORHHQ~ TeMneparypLr cremui. flpencraaneear pe3ynbTaTbr 

KaK MR yCTOi+lIiSbIX. ‘TBK U IieyCTOhiBbIX pSW4MOB. flOKa3ElHEl 803MOXHOCTb nOJlj’WW4 pa3JlH~HbIX 


